
Direct Observation of Carbon-Carbon Bond
Cleavage in Ultrafast Decarboxylations
T. Michael Bockman, Stephan M. Hubig, and Jay K. Kochi*

Department of Chemistry, UniVersity of Houston
Houston, Texas, 77204-5641

ReceiVed January 16, 1996

We wish to report how the recent developments in time-
resolved spectroscopy make it possible to observe the direct
scission of a carbon-carbon bond in real time, a process of
fundamental importance in organic chemistry.1,2 We initially
focus on the facile C-C bond cleavage in the decarboxylation
of labile acyloxy radicals (R-CO2

•) since they generally have
lifetimes of τ < 10-9 s.3 In order to generate this reactive
precursor, we employ the novel method based on electron-
transfer oxidation of carboxylate salts,4 i.e.
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R• + CO2 (1)
which circumvents the difficulties encountered in the usual
methodology based on bond homolysis.5 Thus the instantaneous
production of the acyloxy radical by oxidation of carboxylate
is achieved by charge-transfer excitation (hνCT)7 in eq 1 with
the aid of a new pump-probe spectrometer based on a 230-fs
high-power Ti:sapphire laser10 which allows the simultaneous
spectral detection of the reactive transients over a continuous
(350-900 nm) wavelength range.

We find that photoexcitation (hνCT) according to eq 1 of the
colored pyridinium salts of benzilic acid leads to the loss of
carbon dioxide from the intermediate acyloxy radical within a
picosecond. These ultrafast decarboxylations thus approach
barrier-free unimolecular rates to approximate the transition state
of C-C bond scission.11 For example, upon the photoexcitation
of the yellow methylviologen salt12 of benzilic acid atλCT )
375 nm, the UV absorption band of the reduced methylviologen
(A•) atλmax) 395 nm13 is observed immediately (Figure 1). In
addition, the transient spectrum shows another visible absorption
centered at 600 nm, and the digital deconvolution of the
experimental spectrum yields the resolved absorption bands of
MV •13 and Ph2C•OH,14 as illustrated in Figure 1.15 On the basis
of the observation of both transients within 1-2 ps of the laser
excitation, we conclude that the photoinduced electron transfer
in eq 1 is closely accompanied by decarboxylation, i.e.
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where MV+ and MV• represent methylviologen and reduced
methylviologen,13 respectively. The absorption spectrum of
Ph2C•OH can also be generated without admixture from the MV•

spectrum by the charge-transfer photostimulation of theN-meth-
yl-4-cyanopyridinium salt, as shown in the inset of Figure 1.16

Simultaneous monitoring of the growth of both transients,
as illustrated in Figure 2, demonstrates that the formation of
Ph2C•OH is significantly slower (by about 1 ps) than the
formation of MV•. Reduced methylviologen is thus generated
with the same time constant (τ < 700 fs, fwhm) as the instru-
mental response of the laser system, in accordance with its
instantaneous generation in eq 1.7 On the other hand, the slower
rise of the ketyl radical absorption indicates that it is formed
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from the short-lived benziloxy precursor. Simulation and
comparison of the kinetic traces in Figure 2 allow the extraction
of the first-order rate constant for the formation of the ketyl
radical, and thuskCC in eq 2 is 8× 1011 s-1.17
Polar (substituent) effects on the C-C bond cleavage are

examined in the series of methylviologen salts of methyl- and
methoxy-substituted benzilates. The kinetic traces show partial
decay of the spectral transients to a nonzero residual absorbance,
the value of which varies with the particular benzilate anion.
The complex transient kinetics can be analyzed in terms of a
competition between C-C bond cleavage (eq 2) and back
electron transfer (kbet) to restore the original viologen salt, i.e.

R-CO2
-, A+ 79

kbet
A•, R-CO2

• 98
kCC

R• + CO2 (3)
Simulation of the rise and decay of MV•, combined with

quantitative analysis of the fractional residual absorbance, allows
the separation of the rate constantskCC andkbet for the systems
listed in Table 1.18

The ultrafast C-CO2 bond scission in acyloxy radicals that
are derived from benzilates, with first-order rate constantskCC
in the range of 1011-1012 s-1, stands in marked contrast to the
much slower rates measured for alkyl- and aryl-substituted
acetyloxy radicals, withkCC≈ 109-1010 s-1.3 (Rate constants
for the decarboxylation of these acyloxy radicals determined
by our method agree well with those reported earlier.19) These
rapid rates reflect the very low energies of the transition state
(relative to the acyloxy reactant), which in turn are a conse-
quence of the high degree of stabilization of the ketyl radical,
Ar2C•OH, as the product of decarboxylation.6

The trend in the rates of carbon-carbon bond cleavage show
a consistent decrease as more methyl and methoxy substituents
are added to the benzilate anions.20 As a result, the decarboxy-
lation is most rapid for the benziloxy radical (Ph2C(OH)CO2•),
for which the electron-deficiency (hole) of the photooxidized
anion is less effectively ameliorated by the electron-poor phenyl
moiety relative to the tolyl and anisyl analogues. Furthermore,
the opposite substituent effect is expected for the stabilization
of the electron-rich product (Ar2C•OH) radicals.21 Conse-
quently, electron-donating substituents can stabilize the acyloxy
reactant as well as destabilize the ketyl product, and thus the
Me- and MeO-substituted benziloxy radicals suffer decreased
rates of decarboxylation. On the other hand, the rates for back
electron transfer (kbet) in Table 1 increase as the aromatic
systems become more electron-rich. This trend is in accord
with Marcus theory,22 which predicts such an increase inkbet
as the exergonicity of the electron transfer decreases.23

We believe that the ultrafast bond cleavages exemplified by
decarboxylation of the acyloxy radicals derived from benzilates
do not represent limiting cases with respect to the ultimate
stability of the product radical. Since increased stabilization
of R• in eq 2 leads to more rapid rates of R-CO2

• scission, we
hope to design carboxylate anions that lose an electron and
cleave the C-C bond in a single step. Real-time monitoring
of these concerted reactions will thus constitute the direct obser-
vation of the transition state24 for the breaking of a C-C bond.
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Figure 1. Transient absorption spectrum obtained at 1.0 ps following
the 375-nm charge-transfer excitation of the [MV+, benzilate-] salt in
water at 25°C. Inset: (left) Authentic spectrum of the ketyl radical
(Ph2C•OH) in ref 16 and (right) the spectrum of reduced methylviologen
(MV •) in ref 13c. Digital deconvolution of the broad absorption band
(440-740 nm) in the experimental spectrum is shown as the composite
of the spectra of Ph2C•OH (- - -) and MV• (‚‚‚), as described in
footnote 15.

Figure 2. Kinetic (fs/ps) traces of the formation of MV• (b) and
Ph2C•OH (O) monitored at 605 and 530 nm, respectively. The smooth
curves represent (a) the rise of MV• simulated by taking into account
the instrumental response time of 700 fs (fwhm, see footnote 17a) and
(b) the rise of Ph2C•OH simulated by the convolution of the instrumental
response time and the decarboxylation rate constant ofkCC ) 8× 1011
s-1 (see footnote 17b). The error bars reflect an uncertainty of(0.005
absorbance units in the spectroscopic measurements.

Table 1. Rate Constants for Decarboxylation and Back Electron
Transfer in Methylviologen/Benzilate Radical-Ion Pairsa

benzilate donor (RCO2- ) kbetb (1011 s-1) kCCc (1011 s-1)

unsubstituted 2 8d

4,4′-dimethyl 5 5
4-methoxy 3 1
4,4′-dimethoxy 8 2
2,2′,5,5′-tetramethoxy 8 0.4

a Benziloxy radicals generated by charge-transfer irradiation of
[MV +, RCO2-] with the 230-fs (fwhm) laser pulse atλexc ) 375 or
400 nm in aqueous solution at 23°C. bRate constant ((5%) for back
electron transfer in eq 3.cRate constant ((5% unless indicated
otherwise) for decarboxylation of the acyloxy radical derived from the
benzilate anion in eq 3.dRate constant ((10%) for benziloxy only.
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